• Spine · Feb 2011

    Comparative Study

    Quality control of reconstructed sagittal balance for sagittal imbalance.

    • Kao-Wha Chang, Xiangyang Leng, Wenhai Zhao, Cheng Ching-Wei, Tsung-Chein Chen, Ku-I Chang, and Yin-Yu Chen.
    • Taiwan Spine Center, Jen-Ai Hospital, Taichung, Taiwan, Republic of China. admin_c@taiwanspinecenter.com.tw
    • Spine. 2011 Feb 1;36(3):E186-97.

    Study DesignProspective radiographic study.ObjectiveTo investigate the feasibility of controlling quality of reconstructed sagittal balance for sagittal imbalance.Summary Of Background DataPatients with sagittal imbalance cannot walk or stand erect without overwork of musculature because of compromised biomechanical advantage. The result is muscle fatigue and activity-related pain. During reconstructive surgery, restoration of optimal sagittal balance is crucial for obtaining satisfactory clinical results. However, there is no way to control quality of reconstructed sagittal balance before or during surgery.MethodsA method was developed to determine the lumbosacral curve in a way that theoretically would bring sagittal balance to an ideal state by calculation and simulation for each patient before surgery and then template rods of the curve and a blueprint were made accordingly for operative procedures. Ninety-four consecutive patients with sagittal imbalance due to lumbar kyphosis were treated for intractable pain and then followed up for a mean of 4.3 years. Radiographs were analyzed before surgery, 2 months after surgery, and at most recent follow-up.ResultsThe mean estimated values of L1-S1 lordosis, sacral inclination angle, sacrofemoral distance, and distribution of L1-S1 lordosis at the closing-opening wedge osteotomy site and L4-S1 segments were 30.8°, 24.6°, 0 mm, 16.1% (-5°), and 62% (-19°), respectively. The mean reconstructed values were 41.1°, 23.3°, 3.9 mm, 41% (-17°), and 46% (-19°), respectively. There were significant differences between estimated and reconstructed values of L1-S1 lordosis and the percentage of distributions; however, there was no significant difference between the estimated and reconstructed magnitude of L4-S1 lordosis, sacral inclination angle, and sacrofemoral distance. A properly oriented pelvis can be brought nearly directly above the hip axis. The mean sagittal global balance, represented by the distance between the vertical line through the hip axis and sacral promontory, improved from 61.4 mm before surgery to 3.9 mm 2 months after surgery, and 1.3 mm at final follow-up. Normal sagittal global balance was reconstructed and maintained. The mean sagittal spinal balance measured as the horizontal distance between the C7 sagittal plumb line and the posterior superior corner of S1 improved from 97.4 mm before surgery to 11 mm 2 months after surgery. However, there was significant loss of sagittal spinal balance to 25.4 mm at the fi nal visit. Normal sagittal spinal balance was reconstructed and appeared to be maintained. The magnitude of T1-T12 kyphosis compensated from 13° before surgery to 25.2° 2 months after surgery and 34.5° at fi nal follow-up.ConclusionsQuality control of the reconstructed sagittal balance for sagittal imbalance is possible. Correctly orienting the pelvis, reconstructed by the restoration of enough L1-S1 lordosis with adequate distribution at L4-S1 segments, is a matter of critical importance for optimizing reconstructed sagittal balance. The correctly oriented pelvis can be determined before surgery. Preventing junctional fracture and persistent rehabilitation of surgically injured lumbar extensor musculature are crucial for maintaining the reconstructed sagittal balance.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…