• Rev Esp Cardiol · Oct 2011

    Review

    [Propensity score methods for creating covariate balance in observational studies].

    • Cassandra W Pattanayak, Donald B Rubin, and Elizabeth R Zell.
    • Department of Statistics, Harvard University, Cambridge, Massachusetts, USA.
    • Rev Esp Cardiol. 2011 Oct 1;64(10):897-903.

    AbstractRandomization of treatment assignment in experiments generates treatment groups with approximately balanced baseline covariates. However, in observational studies, where treatment assignment is not random, patients in the active treatment and control groups often differ on crucial covariates that are related to outcomes. These covariate imbalances can lead to biased treatment effect estimates. The propensity score is the probability that a patient with particular baseline characteristics is assigned to active treatment rather than control. Though propensity scores are unknown in observational studies, by matching or subclassifying patients on estimated propensity scores, we can design observational studies that parallel randomized experiments, with approximate balance on observed covariates. Observational study designs based on estimated propensity scores can generate approximately unbiased treatment effect estimates. Critically, propensity score designs should be created without access to outcomes, mirroring the separation of study design and outcome analysis in randomized experiments. This paper describes the potential outcomes framework for causal inference and best practices for designing observational studies with propensity scores. We discuss the use of propensity scores in two studies assessing the effectiveness and risks of antifibrinolytic drugs during cardiac surgery.Published by Elsevier Espana.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.