-
Z Orthop Ihre Grenzgeb · Mar 2005
Comparative Study[Minimally-invasive computer-assisted fluoroscopic navigation for kyphoplasty].
- J A K Ohnsorge, C H Siebert, E Schkommodau, A H Mahnken, A Prescher, and M Weisskopf.
- Orthopädische Universitätsklinik, UKA, RWTH Aachen. jakohnsorge@web.de
- Z Orthop Ihre Grenzgeb. 2005 Mar 1;143(2):195-203.
AimThe transpedicular placement of a hollow needle into vertebral bodies for kyphoplasty requires utmost accuracy and thereby permanent multiplanar X-ray control. Facing the increasing number of vertebral compression fractures, the aim of this work was the implementation of computer-assistance to optimise the issue. Prior to clinical implementation, experimental trials were undertaken to analyse the quality-improving options of the technique.MethodThe virtual image of the planning and the puncture were correlated with the postoperative X-ray image of the needle. The real canal in the bone was then correlated with the preoperative planning in a CT-based 3D model and differences were calculated. As a measure of accuracy the deviation of the needle from the ideal intruding vector and the distance between its top and the centre of a predefined target were scrutinised and related to the indications of the navigation system. Operating time, radiation exposure and general applicability were additionally assessed. All data were compared with those of a conventional control group.ResultsPlanning and navigation could be executed with high accuracy. With an exactly transpedicular approach, neural structures were safely circumnavigated without once missing the target. In the control group the distance fault was up to 9 mm. The navigated drilling differed from the ideal trajectory by 1 degrees to max. 4 degrees. Conventional C-arm control led to a divergence of 4 degrees to 8 degrees . Radiation exposure could be reduced through computer assistance by 76 % to a fourth of the conventionally resulting amount and the pure operating time thereby decreased by 40 %. The inconvenient course of repeated positioning of the C-arm was overcome.ConclusionIn challenging cases of deteriorated anatomy and difficult radiomorphologic orientation, especially of the lower thoracic spine, the CAOS-procedure succeeds in finding the optimal pedicular approach to the vertebral body, helps to avoid collateral damage and minimises the overall risk of the procedure. High accuracy and reduced radiation exposure justify the clinical use of fluoroscopic navigation for transpedicular instrumentation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.