• Spine · Aug 2000

    Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature.

    • I A Stokes, M Gardner-Morse, S M Henry, and G J Badger.
    • Departments of Orthopaedics and Rehabilitation, Physical Therapy, and Medical Biostatistics, University of Vermont, Burlington, Vermont 05405, USA.
    • Spine. 2000 Aug 1;25(15):1957-64.

    Study DesignAn experimental study of healthy subjects' trunk muscle responses to force perturbations at differing angles and steady state efforts.ObjectivesTo determine whether increased preactivation of muscles was associated with decreased likelihood of muscular activation in response to a transient force perturbation.Summary Of Background DataTrunk stability (ability to return to equilibrium position after a perturbation) requires the stiffness of appropriately activated muscles to prevent buckling and consequent "self-injury." Therefore, greater trunk muscle preactivation might decrease the likelihood of reflex muscle responses to small perturbations.MethodsEach of 13 subjects stood in an apparatus with the pelvis immobilized. A harness around the thorax provided a preload and a force perturbation by a horizontal cable and a movable pulley attached to one of five anchorage points on a wall track surrounding the subject at angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees to the forward direction. Subjects first equilibrated with a preload effort of nominally 20% or 40% of their maximum extension effort. Then a single full sine-wave force perturbation pulse of nominal amplitude, 7.5% or 15% of maximum effort, duration 80 milliseconds or 300 milliseconds, was applied at a random time, with three repeated trials of each test condition. The applied force (via a load cell) and the electromyographic activity of six right and left pairs of trunk muscles were recorded. Muscle responses were detected by two methods. 1) Shewhart method: electromyographic signal greater than "baseline" values by more than three standard deviations, and 2) Mean Electromyographic Difference method: mean electromyographic signal in a time window 25 to 150 milliseconds after the force perturbation greater than that in a 25- to 150-millisecond window before the perturbation.ResultsLower preload efforts were associated with more muscle responses (overall mean response detection rate = 33% at low preload and 25% at high preload). Using the Shewhart method, there were significant differences by effort (P<0.05) for all abdominal muscles and for all left dorsal muscles except multifidus. Using the Mean Electromyographic Difference method, there were significant differences by effort (P<0.05) for the same dorsal muscles, but only for one of the abdominal muscles.ConclusionsFindings are consistent with the hypothesis that the spine can be stabilized by the stiffness of activated muscles, obviating the need for active muscle responses to perturbations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…