• Stroke · Dec 1996

    Slow rhythmic oscillations of blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation. Dynamic interrelation and time course in humans.

    • R Steinmeier, C Bauhuf, U Hübner, R D Bauer, R Fahlbusch, R Laumer, and I Bondar.
    • Department of Neurosurgery, University of Erlangen-Nürnberg, Germany. ralf.steinmeier@neurochir.med.unierlangen.de
    • Stroke. 1996 Dec 1;27(12):2236-43.

    Background And PurposeVarious biological signals show nonpulsatile, slow rhythmic oscillations. These include arterial blood pressure (aBP), blood flow velocity in cerebral arteries, intracranial pressure (ICP), cerebral microflow, and cerebral tissue PO2. Generation and interrelations between these rhythmic fluctuations remained unclear. The aim of this study was to analyze whether stable dynamic interrelations in the low-frequency range exist between these different variables, and if they do, to analyze their exact time delay.MethodsIn a clinical study, 16 comatose patients with either higher-grade subarachnoid hemorrhage or severe traumatic brain injury were examined. A multimodal digital data acquisition system was used to simultaneously monitor aBP, flow velocity in the middle cerebral artery (FVMCA), ICP, cerebral microflow, and oxygen saturation in the jugular bulb (SjO2). Cross-correlation as a means to analyze time delay and correlation between two periodic signals was applied to a time series of 30 minutes' duration divided into four segments of 2048 data points (approximately 436 seconds) each. This resulted in four cross-correlations for each 30-minute time series. If the four cross-correlations were consistent and reproducible, averaging of the original cross-correlations was performed, resulting in a representative time delay and correlation for the complete 30-minute interval.ResultsReproducible cross-correlations and stable dynamic interrelations were found between aBP, FVMCA, ICP, and SjO2. The mean time delay between aBP and ICP was 6.89 +/- 1.90 seconds, with a negative correlation in 81%. A mean time delay of 1.50 +/- 1.29 seconds (median, 0.85 seconds) was found between FVMCA and ICP, with a positive correlation in 94%. The mean delay between ICP and SjO2 was 9.47 +/- 2.21 seconds, with a positive correlation in 77%. Mean values of aBP and ICP did not influence the time delay and dynamic interrelation between the different parameters.ConclusionsThese results strongly support Rosner's theory that ICP B-waves are the autoregulatory response of spontaneous fluctuations of cerebral perfusion pressure. There is casuistic evidence that failure of autoregulation significantly modifies time delay and the correlation between aBP and ICP.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…