• Pflugers Arch. · Apr 2014

    Review

    The T-type calcium channel as a new therapeutic target for Parkinson's disease.

    • Ya-Chin Yang, Chun-Hwei Tai, Ming-Kai Pan, and Chung-Chin Kuo.
    • Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
    • Pflugers Arch. 2014 Apr 1;466(4):747-55.

    AbstractParkinson's disease (PD) is one of the most prevalent movement disorder caused by degeneration of the dopaminergic neurons in substantia nigra pars compacta. Deep brain stimulation (DBS) at the subthalamic nucleus (STN) has been a new and effective treatment of PD. It is interesting how a neurological disorder caused by the deficiency of a specific chemical substance (i.e., dopamine) from one site could be so successfully treated by a pure physical maneuver (i.e., DBS) at another site. STN neurons could discharge in the single-spike or the burst modes. A significant increase in STN burst discharges has been unequivocally observed in dopamine-deprived conditions such as PD, and was recently shown to have a direct causal relation with parkinsonian symptoms. The occurrence of burst discharges in STN requires enough available T-type Ca(2+) currents, which could bring the relatively negative membrane potential to the threshold of firing Na(+) spikes. DBS, by injection of negative currents into the extracellular space, most likely would depolarize the STN neuron and then inactivate the T-type Ca(2+) channel. Burst discharges are thus decreased and parkinsonian locomotor deficits ameliorated. Conversely, injection of positive currents into STN itself could induce parkinsonian locomotor deficits in animals without dopaminergic lesions. Local application of T-type Ca(2+) channel blockers into STN would also dramatically decrease the burst discharges and improve parkinsonian locomotor symptoms. Notably, zonisamide, which could inhibit T-type Ca(2+) currents in STN, has been shown to benefit PD patients in a clinical trial. From the pathophysiological perspectives, PD can be viewed as a prototypical disorder of "brain arrhythmias". Modulation of relevant ion channels by physical or chemical maneuvers may be important therapeutic considerations for PD and other diseases related to deranged neural rhythms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.