• Eur J Cardiothorac Surg · May 2012

    Studies of isolated global brain ischaemia: II. Controlled reperfusion provides complete neurologic recovery following 30 min of warm ischaemia - the importance of perfusion pressure.

    • Bradley S Allen, Yoshihiro Ko, Gerald D Buckberg, and Zhong Tan.
    • Department of Surgery, University of California, Los Angeles, CA, USA. allen.brad@yahoo.com
    • Eur J Cardiothorac Surg. 2012 May 1;41(5):1147-54.

    ObjectivesNeurologic injury after sudden death is likely due to a reperfusion injury following prolonged brain ischaemia, and remains problematic, especially if the cardiac arrest is unwitnessed. This study applies a newly developed isolated model of global brain ischaemia (simulating unwitnessed sudden death) for 30 min to determine if controlled reperfusion permits neurologic recovery.MethodsAmong the 17 pigs undergoing 30 min of normothermic global brain ischaemia, 6 received uncontrolled reperfusion with regular blood (n = 6), and 11 were reperfused for 20 min with a warm controlled blood reperfusate containing hypocalcaemia, hyper-magnesemia, alkalosis, hyperosmolarty and other constituents that were passed through a white blood cell filter and delivered at flow rates of 350 cc/min (n = 3), 550 cc/min (n = 2) or 750 cc/min (n = 6). Neurologic deficit score (NDS) evaluated brain function (score 0 = normal, 500 = brain death) 24 h post-reperfusion and 2,3,5-triphenyltetrazolium chloride (TTC) staining determined brain infarction.ResultsRegular blood (uncontrolled) reperfusion caused negligible brain O(2) uptake by IN Vivo Optical Spectroscopy (INVOS) (<10-15% O(2) extraction), oxidant damage demonstrated by raised conjugated diene (CD) levels (1.78 ± 0.13 A233 mn), multiple seizures, 1 early death from brain herniation, high NDS (249 ± 39) in survivors, brain oedema (84.4 ± 0.6%) and extensive cerebral infarctions. Conversely, controlled reperfusion restored surface brain oxygen saturation by INVOS to normal (55-70%), but the extent of neurologic recovery was determined by the brain reperfusion pressure. Low pressure reperfusion (independent of flow) produced the same adverse functional, metabolic and anatomic changes that followed uncontrolled reperfusion in seven pigs (three at 350 cc/min, two at 550 and two at 750 cc/min). Conversely, higher reperfusion pressure in four pigs (all at 750 cc/min) resulted in NDS of 0-70* indicating complete (n = 2) or near complete (n = 2) neurological recovery, negligible CDs production (1.29 ± 0.06 A233mn)*, minimal brain oedema (80.6 ± 0.2%)* and no infarction by TTC stain.ConclusionsBrain injury can be avoided after 30 min of normothermic cerebral ischaemia if controlled reperfusion pressure is >50 mmHg, but the lower pressure (<50 mmHg) controlled reperfusion that is useful in other organs cannot be transferred to the brain. Moreover, INVOS is a poor guide to the adequacy of cerebral perfusion and the capacity of controlled brain reperfusion to restore neurological recovery. *P < 0.001 versus uncontrolled or low pressure controlled reperfusion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…