• Exp. Lung Res. · Dec 2002

    Time course of quartz and TiO(2) particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats.

    • Donna D Zhang, Mark A Hartsky, and David B Warheit.
    • DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, Delaware, USA.
    • Exp. Lung Res. 2002 Dec 1;28(8):641-70.

    AbstractApoptosis, or programmed cell death, has been reported to play an important role in the resolution of pulmonary inflammation. This study was undertaken to investigate the role of apoptosis in resolving particle-induced lung inflammatory responses in exposed rats, using a dose-response / time course experimental design. Groups of rats were exposed via intratracheal instillation to 0, 0.5, 1, 5, 10, or 50 mg/kg body weight of quartz (i.e., crystalline silica) particles or to 0, 0.5, 1, 5, 10, 20, or 50 mg/kg of pigment-grade titanium dioxide (TiO(2)) particles and evaluated for lung inflammation parameters and evidence of apoptosis of inflammatory cells at 24, 48, 72, or 168 hours post exposure. At each post exposure evaluation period, bronchoalveolar lavage (BAL)-recovered cells from control and particle-exposed rats were assessed for apoptosis using 4 different techniques. The results in silica-exposed rats demonstrated a significant dose-related increase in inflammation concomitant with apoptosis of pulmonary inflammatory cells at 24 to 48 hours post exposure. At later postexposure time points, both the silica-induced inflammatory responses and apoptotic levels of inflammatory cells at higher doses (i.e., >or= 5 mg/kg) were reduced but persisted through 1 week. TUNEL (TdT-mediated dUTP nick end-labeling) assay studies confirmed that the vast majority of apoptotic cells were neutrophils. In contrast, titanium dioxide particle exposures produced transient pulmonary inflammation but only small measurable and nonsignificant apoptotic responses at higher exposure concentrations. These results suggest that the sustained lung inflammatory response in rats exposed to >or= 5 mg/kg silica may be related to the ineffectiveness of the normal apoptotic mechanisms associated with resolution of inflammation. However, because quartz particles are known to be cytotoxic to alveolar macrophages and other lung cells, normal apoptotic mechanisms may have limited utility for resolving particle-induced inflammation, particularly because silica may not be representative of other particle-types. Alternatively, it seems unlikely that apoptosis served to promote silica-induced lung inflammatory responses because the initial increase of apoptosis in inflammatory cells was subsequently correlated with a reduction of the pulmonary inflammatory response in silica-exposed rats. The findings from this in vivo study demonstrate that the neutrophil, and not the alveolar macrophage, is the primary inflammatory cell-type that undergoes apoptosis in response to particles. Furthermore, at doses causing similar degrees of inflammation at 24 hours post exposure, the magnitude of apoptosis induced by silica is significantly larger than that induced by TiO(2), indicating that there are potency differences in lung inflammation as well as apoptotic responses among different particle-types.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.