• Arthritis Res. Ther. · Jan 2010

    Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes.

    • Ben M Minogue, Stephen M Richardson, Leo Ah Zeef, Anthony J Freemont, and Judith A Hoyland.
    • Tissue Injury and Repair, School of Biomedicine, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. Ben.Minogue@manchester.ac.uk
    • Arthritis Res. Ther. 2010 Jan 1;12(1):R22.

    IntroductionNucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.MethodsMicroarrays were conducted on bovine AC, AF and NP cells, using Affymetrix Genechip(R) Bovine Genome Arrays. Differential expression levels for a number of genes were confirmed by quantitative real time polymerase chain reaction (qRT-PCR) on bovine, AC, AF and NP cells, as well as separated bovine NP and notochordal (NC) cells. Expression of these novel markers were further tested on normal human AC, AF and NP cells, and degenerate AF and NP cells.ResultsMicroarray comparisons between NP/AC&AF and NP/AC identified 34 NP-specific and 49 IVD-specific genes respectively that were differentially expressed > or =100 fold. A subset of these were verified by qRT-PCR and shown to be expressed in bovine NC cells. Eleven genes (SNAP25, KRT8, KRT18, KRT19, CDH2, IBSP, VCAN, TNMD, BASP1, FOXF1 & FBLN1) were also differentially expressed in normal human NP cells, although to a lesser degree. Four genes (SNAP25, KRT8, KRT18 and CDH2) were significantly decreased in degenerate human NP cells, while three genes (VCAN, TNMD and BASP1) were significantly increased in degenerate human AF cells. The IVD negative marker FBLN1 was significantly increased in both degenerate human NP and AF cells.ConclusionsThis study has identified a number of novel genes that characterise the bovine and human NP and IVD transcriptional profiles, and allows for discrimination between AC, AF and NP cells. Furthermore, the similarity in expression profiles of the separated NP and NC cell populations suggests that these two cell types may be derived from a common lineage. Although interspecies variation, together with changes with IVD degeneration were noted, use of this gene expression signature will benefit tissue engineering studies where defining the NP phenotype is paramount.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.