• Journal of critical care · Mar 1997

    Tracheal gas insufflation improves ventilatory efficiency during metacholine-induced bronchospasm.

    • A M Miro, L A Hoffman, F J Tasota, D W Sigler, D T Gowski, J Lutz, T Zullo, and M R Pinsky.
    • Department of Anesthesiology and Critical Care Medicine, School of Medicine, Pittsburgh, PA 15261, USA.
    • J Crit Care. 1997 Mar 1; 12 (1): 13-21.

    IntroductionBarotrauma and cardiovascular insufficiency are frequently encountered problems in patients with acute bronchospastic disease who require mechanical ventilation. Permissive hypercapnia is a recognized strategy for minimizing these adverse effects; however, it has potential risks. Tracheal gas insufflation (TGI) has been shown to increase carbon dioxide elimination efficiency and thus could permit mechanical ventilation at lower peak airway pressures without inducing hypercapnia. However, caution exists as to the impact of TGI on lung volumes, given that expiratory flow limitation is a hallmark of bronchospastic disease.PurposeTo examine these issues, we studied ventilatory and hemodynamic effects of continuous TGI as an adjunct to mechanical ventilation before and after methacholine-induced bronchospasm.Materials And MethodsTen anesthetized, paralyzed dogs were ventilated on volume-controlled mechanical ventilation during administration of continuous TGI (0, 2, 6, and 10 L/min) while total inspired minute ventilation (ventilator-derived minute ventilation plus TGI) was kept constant. In an additional step, with TGI flow of 10 L/min, total inspired minute ventilation was decreased by 30%.ResultsPaCO2 decreased (44 +/- 7 mm Hg at zero flow to 34 +/- 7 mm Hg at 6 L/min and 31 +/- 6 mm Hg at 10 L/min, respectively, P < .05), as did the dead space to tidal volume ratio at TGI of 6 and 10 L/min compared with zero flow. There were no significant changes in end-expiratory transpulmonary pressure, mean arterial pressure, or cardiac output. During the highest TGI flow (10 L/min), with a 30% reduction of total inspired minute ventilation, both PaCO2 and peak airway pressure remained less than during zero flow conditions.ConclusionWe conclude that TGI increases carbon dioxide elimination efficiency during constant and decreased minute ventilation conditions without any evidence of hyperinflation or hemodynamic instability during methacholine-induced bronchospasm.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.