• Eur. J. Pharmacol. · Sep 2014

    The role of spinal serotonin receptor and alpha adrenoceptor on the antiallodynic effects induced by intrathecal milnacipran in chronic constriction injury rats.

    • Takehiro Nakamura, Tetsuya Ikeda, Ryuichiro Takeda, Kaori Igawa, Rumi Naono-Nakayama, Sumio Sakoda, Toshikazu Nishimori, and Yasushi Ishida.
    • Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
    • Eur. J. Pharmacol. 2014 Sep 5;738:57-65.

    AbstractMilnacipran, a reuptake inhibitor of noradrenaline (NA) and serotonin (5-HT), elicits an antiallodynic effect in rats with neuropathic pain; however, the role of NA and 5-HT receptors in the induction of the antiallodynic effect of milnacipran remains unclear. Thus, we examined the effects of prazosin as an α1 adrenoceptor antagonist, yohimbine as an α2 adrenoceptor antagonist, metergoline as a 5-HT1, 5-HT2 and 5-HT7 receptor antagonist, cyanopindolol as a 5-HT1A/1B receptor antagonist, ketanserin as a 5-HT2 receptor antagonist, and ondansetoron as a 5-HT3 receptor antagonist on the antiallodynic effect of milnacipran in neuropathic rats with chronic constriction injury (CCI). The CCI rats expressed mechanical and thermal allodynia, which was attenuated by intrathecal injection of milnacipran. Yohimbine, but not prazosin, reversed the milnacipran-induced antiallodynic effect. The antiallodynic effect of milnacipran was also reversed by metergoline, ketanserin and ondansetron, while cyanopindolol reversed the antiallodynic effect on mechanical, but not thermal stimulation. Furthermore, c-Fos expression in lamina I/II of the spinal dorsal horn was enhanced by thermal stimulation and the enhanced expression of c-Fos was suppressed by milnacipran. This effect of milnacipran was reversed by yohimbine, metergoline, katanserin and ondansetron, but not prazosin. These results indicate that the effect of milnacipran on mechanical and thermal allodynia and c-Fos expression is elicited through the α2 adrenoceptor, but not α1 adrenoceptor, and 5-HT2 and 5-HT3 receptors; furthermore, the 5-HT1A/1B receptor is involved in mechanical allodynia, but not thermal allodynia.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…