• J. Neurosci. · Oct 2009

    Retrograde viral vector-mediated inhibition of pontospinal noradrenergic neurons causes hyperalgesia in rats.

    • Patrick W Howorth, Simon R Thornton, Victoria O'Brien, Wynne D Smith, Natalia Nikiforova, Anja G Teschemacher, and Anthony E Pickering.
    • Department of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom.
    • J. Neurosci. 2009 Oct 14;29(41):12855-64.

    AbstractPontospinal noradrenergic neurons form a component of an endogenous analgesic system and represent a potential therapeutic target. We tested the principle that genetic manipulation of their excitability can alter nociception using an adenoviral vector (AVV-PRS-hKir(2.1)) containing a catecholaminergic-selective promoter (PRS) to retrogradely transduce and inhibit the noradrenergic neurons projecting to the lumbar dorsal horn through the expression of a potassium channel (hKir(2.1)). Expression of hKir(2.1) in catecholaminergic PC12 cells hyperpolarized the membrane potential and produced a barium-sensitive inward rectification. LC neurons transduced by AVV-PRS-hKir(2.1) in slice cultures also showed barium-sensitive inward rectification and reduced spontaneous firing rate (median 0.2 Hz; n = 19 vs control 1.0 Hz; n = 18, p < 0.05). Pontospinal noradrenergic neurons were retrogradely transduced in vivo by injection of AVV into the lumbar dorsal horn (L4-5). Rats transduced with AVV-PRS-hKir(2.1) showed thermal but not mechanical hyperalgesia. Similar selective augmentation of thermal hyperalgesia was seen in the CFA-inflammatory pain model after AVV-PRS-hKir(2.1). In the formalin test, rats transduced with hKir(2.1) showed enhanced nocifensive behaviors (both Phase I and II, p < 0.05, n = 11/group) and increased c-Fos-positive cells in the lumbar dorsal horn. Transduction with AVV-PRS-hKir(2.1) before spared nerve injury produced no change in tactile or cold allodynia. Thus, the selective genetic inhibition of approximately 150 pontospinal noradrenergic neurons produces a modality-specific thermal hyperalgesia, increased nocifensive behaviors, and spinal c-Fos expression in the formalin test, but not in the spared nerve injury model of neuropathic pain, indicating that these neurons exert a selective tonic restraining influence on in vivo nociception.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.