• Pain · Jul 2014

    The VGF-derived peptide TLQP-21 contributes to inflammatory and nerve injury-induced hypersensitivity.

    • Carolyn A Fairbanks, Cristina D Peterson, Rebecca H Speltz, Maureen S Riedl, Kelley F Kitto, Jaclyn A Dykstra, Patrick D Braun, Masato Sadahiro, Stephen R Salton, and Lucy Vulchanova.
    • Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
    • Pain. 2014 Jul 1; 155 (7): 1229-37.

    AbstractVGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.