• Critical care medicine · Dec 1993

    Comparative Study

    Relationship of burn-induced lung lipid peroxidation on the degree of injury after smoke inhalation and a body burn.

    • R Demling, L Picard, C Campbell, and C Lalonde.
    • Longwood Area Trauma Center, Brigham and Women's Hospital, Boston, MA.
    • Crit. Care Med. 1993 Dec 1;21(12):1935-43.

    ObjectiveWe compared the effect of a modest smoke inhalation injury, a burn injury alone, and a smoke inhalation injury plus a body burn, on the degree of lung oxidant-induced lipid peroxidation and lung injury.DesignProspective animal study with concurrent controls.SettingAn animal laboratory.SubjectsForty-four adult yearling female sheep (weight range 45 to 50 kg).InterventionsForty-four sheep were prepared with lung and prefemoral (soft tissue) lymph fistulas. Twelve breaths of cooled smoke with tidal volume of 10 mL/kg body weight were given to 24 sheep, producing a peak blood carboxyhemoglobin of 25% to 30%. Twelve sheep also received a 15% total body surface third-degree burn. Sheep were killed at 4 or 24 hrs.Measurements And Main ResultsCirculating lipid peroxidation was monitored as conjugated dienes and tracheobronchial mucosal and lung parenchyma as malondialdehyde. Antioxidant defenses were monitored by catalase activity. Lung physiologic and histologic changes were compared. We noted intense airways inflammation in both smoke inhalation groups and lung parenchymal inflammation in all groups. Lung lymph flow was modestly increased (two-fold) in the smoke inhalation groups. Alveolar water content was not significantly increased after any injury. PaO2 was decreased at 24 hrs after the smoke insult alone. Parenchymal malondialdehyde content did not increase with the smoke insult alone, but did increase from a control value of 110 +/- 20 to 270 +/- 24 nmol/g tissue by 4 hrs in the combined burn and smoke injury group, while catalase activity decreased. Airway mucosal malondialdehyde did not increase in any group.ConclusionsWe conclude that alveolar capillary permeability is not increased early after a moderate smoke injury or smoke injury with burn. Lipid peroxidation is not increased in large airway or lung parenchyma with early after-smoke exposure. The addition of a burn significantly increases lung parenchymal lipid peroxidation, but the oxidant changes do not correspond with the degree of early lung dysfunction.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.