• Neurochem. Int. · Sep 2015

    Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death.

    • Helena Domin, Danuta Jantas, and Maria Śmiałowska.
    • Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland. Electronic address: domin@if-pan.krakow.pl.
    • Neurochem. Int. 2015 Sep 1; 88: 110-23.

    AbstractAlthough numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1 h after KA). In both models of neurotoxicity, namely OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM), suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7 receptor antagonist. The obtained results indicated that the activation of mGlu7 receptors may be a promising target for neuroprotection against ischemic and excitotoxic insults.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.