• Spine · Nov 2007

    Comparative Study

    Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion.

    • Boyle C Cheng, Jeff Gordon, Joseph Cheng, and William C Welch.
    • Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA. chengb@upmc.edu
    • Spine. 2007 Nov 1;32(23):2551-7.

    Study DesignBiomechanical in vitro human cadaveric lumbar flexibility testing with 6 sequential treatments.ObjectiveTo compare the range of motion (ROM) of dynamic one-level posterior stabilization constructs to one-level rigid rod fixation constructs and to study the effects of extending the posterior construct to the adjacent superior level.Summary Of Background DataPatients experiencing pain and biomechanical instability at one level may also present with radiographic or other indicators of early degeneration at an adjacent level. Clearly, fusion would be warranted at the symptomatic level, but the treatment plan for the adjacent level remains controversial. Additionally, the effects on adjacent motion segments above a fusion level are currently not well understood.MethodsThirteen fresh frozen human cadaveric lumbar spines (L1-L5) were tested in 6 modes of loading: 3 were randomized to dynamic posterior stabilization constructs and 7 to a rigid rod pedicle screw system. Each group was subjected to 6 treatments.ResultsWhen comparing the instrumented treatments, only Treatment 6, two-level hybrid constructs, exhibited a statistically significant effect in flexion-extension bending at L2-L3 between the posterior dynamic system and rigid rod fixation (P = 0.014).ConclusionROM at the superior adjacent level (L2-L3) demonstrated no significant difference between intact, destabilized, one-level posterior fixation, and one-level circumferential fusion at the index level (L3-L4) when comparing posterior dynamic stabilization to rigid rod fixation. However, ROM at the superior adjacent level (L2-L3) was significantly greater for lateral bending and axial rotation when both levels (L2-L3 and L3-L4) were stabilized with a dynamic stabilization system. When the functional spinal units were instrumented with a two-level hybrid construct, two-level posterior instrumentation (L2-L3 and L3-L4) with a cage at the index level (L3-L4), all bending modes generated significantly greater ROM for the dynamic stabilization group at L2-L3 compared with rigid rod fixation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…