• Clin J Pain · Mar 2015

    Organ-Specific Microcirculatory Mass Transport of Oxycodone in Humans: Clinical Implications for Therapeutic Use.

    • Oscar A Linares, William E Schiesser, and Annemarie Daly.
    • *Mathematical Medicine and Biostatistics Unit, Plymouth Pharmacokinetic Modeling Study Group, Plymouth ‡Wayne State University Law School, Detroit §Grace Hospice of Ann Arbor, Ann Arbor, MI †Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA.
    • Clin J Pain. 2015 Mar 1;31(3):206-13.

    ObjectivesTo begin to address the problem of heterogeneity of distribution of oxycodone (OC) in humans, we developed an organ-specific microcirculatory capillary-tissue exchange 2-compartment model for studying regional OC mass transport.Materials And MethodsThe model was developed in silico. It quantifies OC's organ-specific mass transport rates, clearances and recycling, and it considers the effects of blood flow on OC's convective and diffusive transport.ResultsWhat is new is the finding that OC undergoes local recycling at the level of organ-specific capillary-tissue exchange units in humans. Results indicate recycled OC occurs in sufficient amounts to function as a reusable source of circulating OC; which has important implications for OC dosing. Results show the brain, which is central to OC effects only receives about 8% of OC delivered to all organs via the microcirculation. This suggests that differential regulation of receptor binding, trafficking, internalization, or desensitization in the brain likely plays a dominant role in OC's central analgesic effects.DiscussionOrgan-specific OC mass transport kinetics provide new information for OC dosing in pain management. The model promotes patient safety in opioid prescribing because it allows predictions to be made about the relative contribution that OC recycling makes to circulating OC levels. The model indicates that pharmacologic modulation of the microcirculation may give way to site-specific delivery of opioids in the future. Our study demonstrates that translation of bench in silico research data into clinical practice, although still challenging, is feasible and can assist in OC dose regimen design for patient safety.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…