• Eur. J. Pharmacol. · Sep 2013

    Review

    The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain.

    • Pilar Sánchez-Blázquez, Maria Rodríguez-Muñoz, Esther Berrocoso, and Javier Garzón.
    • Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain. Electronic address: psb@cajal.csic.es.
    • Eur. J. Pharmacol. 2013 Sep 15;716(1-3):94-105.

    AbstractMultiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain.© 2013 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…