• J. Am. Coll. Cardiol. · Mar 1997

    Effects of preload, afterload and inotropy on dynamics of ischemic segmental wall motion.

    • S Perlini, T E Meyer, and P Foëx.
    • Clinica Medica I, University of Pavia, Italy.
    • J. Am. Coll. Cardiol. 1997 Mar 15;29(4):846-55.

    ObjectivesThis study sought to explore the separate and combined effects of changes in preload, afterload and contractility on the dynamics of systolic bulging.BackgroundThe extent of ischemic systolic bulging has been shown to be mechanically disadvantageous to left ventricular pump performance. The factors that determine ischemic segmental wall motion have not been systematically studied.MethodsFourteen beagles were instrumented with sonomicrometers, micromanometer pressure gauges and a balloon in the inferior vena cava. Regional function was evaluated before and after 90 s of proximal left circumflex coronary artery occlusion. Occlusions were repeated after increasing systolic pressure by 5 to 10 (afterload I) and 15 to 20 mm Hg (afterload II) with graded aortic occlusion during inotropic stimulation with dobutamine (2.5 and 5 micrograms/kg body weight per min intravenously), with simultaneous 5 micrograms/kg per min dobutamine infusion and afterload II and during 2.5% halothane (negative inotrope) concentration. A 20-min recovery period was allowed between each stage of the experiment so that regional function returned to its preocclusion level. Ischemic wall motion was characterized by percent systolic bulging and its peak positive systolic lengthening rate (+dL/dt).ResultsBecause bulging is markedly influenced by regional preload, systolic bulging was characterized over a wide range of end-diastolic lengths of the ischemic segment during caval balloon occlusion. During each intervention, a decrease in regional preload increased the extent of percent systolic bulging. This preload dependency was more pronounced with dobutamine infusions. An increase in afterload was not associated with increased percent systolic bulging at any given preload. At a predetermined preload, bulging was not appreciably altered when an increase in left ventricular systolic pressure was not associated with a change in peak positive first derivative of left ventricular pressure (+dP/dt) but was significantly worse when peak +dP/dt increased. Dobutamine caused a dose-dependent increase in percent systolic bulging and peak +dL/dt that was positively correlated with peak +dP/dt.ConclusionsBy using different loading and inotropic interventions and analyzing the regional wall motion behavior over a range of regional preloads, we can conclude that preload and rate of pressure (tension) development are the principal determinants of systolic bulging. Increases in left ventricular pressure alone had a minimal effect on systolic bulging.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.