• Intensive care medicine · Jul 2014

    My paper 20 years later: Effect of positive end-expiratory pressure on right ventricular function in humans.

    • Michael R Pinsky.
    • Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 606 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA, pinskymr@upmc.edu.
    • Intensive Care Med. 2014 Jul 1; 40 (7): 935941935-41.

    IntroductionIn 1992, we published a report on the effect of positive end-expiratory pressure (PEEP) on right ventricular (RV) function in humans.ResultsWe measured RV volumes and pressures and pericardial pressure (Ppc) as PEEP was increased from zero to 15 cm H20 in 12 patients after thoracotomy, using a pulmonary arterial catheter equipped with a rapid responding thermistor that allowed measurement of RV ejection fraction (RVef), while Ppc was measured via a pericardial balloon catheter. RV end-diastolic volume (EDV) was estimated as the ratio of stroke volume (SV) to RVef, whereas RV end-systolic volume (ESV) were estimated as RV EDV-SV. PEEP increased Ppc and Pra, but RVef unaltered. There was no relation between either RV filling pressure (Pra-Ppc) and EDV or the change in RV filling pressure and EDV, although EDV varied significantly with PEEP (p < 0.05). The relations between EDV and both SV and RVef were weak (r = 0.54 and 0.55, respectively). RVef varied inversely with ESV (r = -0.77), although it showed no relation to transmural peak pulmonary artery pressure (r = 0.28). However, both absolute and relative changes in EDV corresponded closely with respective ESV values (r = 0.94). We concluded that EDV varies independently of changes in filling pressure and that changes in ESV occur independently of changes in ejection pressure. These data can be explained by assuming that the RV shape changes can dissociate changes in RV EDV from changes in RV wall stress (preload). Thus, changes in RV EDV may or may not alter SV but should proportionately change ESV to a degree dependent on election pressure and contractility.ConclusionsSubsequent studies confirmed our findings which can be summarized as 1) RV filling is independent of Pra; thus central venous pressure cannot be used to estimate RV preload; and 2) for cardiac output to increase by the Starling mechanism the RV must dilate increasing RV ESV. Since the pericardium limits absolute biventricular volume, there is a finite limit to which cardiac output can increase by the Starling mechanism defined not by left ventricular contractility but by RV function. And 3) if fluid loading causes Pra to increase without increasing cardiac output, then resuscitation should stop as the patient is going into acute cor pulmonale. These truths help bedside clinicians understand the echocardiographic and hemodynamic signatures of both RV failure and volume responsiveness.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.