• Anesthesia and analgesia · Jun 2002

    The role of spinal opioid receptors in antinociceptive effects produced by intrathecal administration of hydromorphone and buprenorphine in the rat.

    • Gopi A Tejwani and Anil K Rattan.
    • Department of Pharmacology, College of Medicine and Public Health, Ohio State University, 5197 Graves Hall, 333 W 10th Avenue, Columbus, OH 43210-1239, USA. Tejwani.1@osu.edu
    • Anesth. Analg. 2002 Jun 1;94(6):1542-6, table of contents.

    UnlabelledThe intrathecal administration of morphine has been the standard therapy to control long-term intractable pain. Recently, a panel of pain therapy experts suggested that because of the lack of efficacy or because of the side effects produced by morphine in some patients, other drugs, such as hydromorphone and buprenorphine, should be investigated for their analgesic properties. We designed this study to compare the efficacy of intrathecal hydromorphone and buprenorphine to suppress thermal nociception in male Sprague-Dawley rats. An additional objective was to understand whether hydromorphone and buprenorphine bind and act as agonists to mu-, delta-, and kappa-spinal opioid receptors. Intrathecally-administered hydromorphone and buprenorphine produced a dose- and time-dependent increase in the tail-flick response latency in rats. The 50% effective dose value for the antinociceptive effect of buprenorphine and hydromorphone were 4 and 69.5 nmol/L, respectively. Both drugs act as agonists to mu-opioid receptors, as determined by their ability to displace [(3)H]-DAMGO from the spinal opioid receptors and by the ability of an opioid receptor antagonist, naloxone, to reverse their antinociceptive effects. Buprenorphine also has an agonistic effect on the kappa-opioid receptors. For the first time, we report that intrathecal buprenorphine is approximately 17 times more effective than hydromorphone in inhibiting thermal pain, and buprenorphine produces its antinociceptive effect by acting as an agonist at both mu- and kappa-spinal opioid receptors. Naloxone administered intrathecally was effective in preventing the antinociceptive effects of subsequent intrathecal injections of buprenorphine.ImplicationsHydromorphone and buprenorphine are two important drugs used for pain relief. We observed that intrathecal buprenorphine is 17 times more potent than hydromorphone to inhibit pain in rats. Both drugs exert their effects through specific spinal opioid receptors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…