-
- Jun-Gang Wang, Judith A Strong, Wenrui Xie, and Jun-Ming Zhang.
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
- Anesthesiology. 2007 Aug 1; 107 (2): 322332322-32.
BackgroundChronic pain conditions may result from peripheral nerve injury, chronic peripheral inflammation, or sensory ganglia inflammation. However, inflammatory processes may also contribute to peripheral nerve injury responses. To isolate the contribution of local inflammation of sensory ganglia to chronic pain states, the authors previously developed a rat model in which long-lasting pain is induced by inflaming sensory ganglia without injuring the neurons. This results in prolonged mechanical pain, local increases in proinflammatory cytokines, increased neuronal hyperexcitability, and abnormal spontaneous activity.MethodsThe authors used whole cell patch clamp in acutely isolated small-diameter neurons to determine how localized inflammation (3-5 days) of L4 and L5 ganglia altered voltage-gated K and Na currents.ResultsTetrodotoxin-sensitive Na currents increased twofold to threefold in neurons from inflamed ganglia. Tetrodotoxin-resistant Na currents increased more than twofold, but only in cells that bound isolectin B4. These increases occurred without shifts in voltage dependence of activation and inactivation. Similar results are seen in models of peripheral inflammation, except for the large magnitudes. Unlike most pain models, localized inflammation increased rather than decreased voltage-gated K currents, due to increased amplitudes of the sustained (delayed rectifier) and fast-inactivating transient components. The overall effect in current clamp experiments was an increase in excitability as indicated by decreased rheobase and lower action potential threshold.ConclusionsNeuronal inflammation per se, in the absence of nerve injury, causes large increases in Na channel density and enhanced excitability. The unusual finding of increased K current may reflect regulation of excitability in the face of such large increases in Na current.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.