• Brain pathology · Oct 1998

    The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations.

    • S Lacroix, D Feinstein, and S Rivest.
    • Laboratory of Molecular Endocrinology, CHUL Research Center and Laval University, Québec, Canada.
    • Brain Pathol. 1998 Oct 1;8(4):625-40.

    AbstractSystemic injection of the bacterial endotoxin lipopolysaccharide (LPS) provides a very good mean for increasing the release of proinflammatory cytokines by circulating monocytes and tissue macrophages. There is now considerable evidence that LPS exerts its action on mononuclear phagocytes via the cell surface receptor CD14. The aim of the present study was to verify the hypothesis that the brain has also the ability to express the gene encoding the LPS receptor, which may allow a direct action of the endotoxin onto specific cellular populations during blood sepsis. Adult male Sprague-Dawley rats were sacrificed 1, 3, 6 and 24 h after systemic (i.v. or i.p.) injection of LPS or the vehicle solution. Brains were cut from the olfactory bulb to the medulla in 30-microm coronal sections and mRNA encoding rat CD14 was assayed by in situ hybridization histochemistry using a specific 35S-labeled riboprobe. The results show low levels of CD14 mRNA in the leptomeninges, choroid plexus and along blood vessels of the brain microvasculature under basal conditions. Systemic injection of the bacterial endotoxin caused a profound increase in the expression of the gene encoding CD14 within these same structures as well as in the circumventricular organs (CVOs) the organum vasculosum of the lamina terminalis, subfornical organ, median eminence and area postrema. In most of these structures, the signal for CD14 mRNA was first detected at 1 h, reached a peak at 3 h post-injection, declined at 6 h, and return to basal levels 24 h after LPS treatment. Quite interestingly, a migratory-like pattern of CD14 positive cells was observed from all sensorial CVOs to deeper parenchymal brain 3 and 6 h after LPS injection. At 6 h post-challenge, small positive cells were found throughout the entire parenchymal brain and dual-labeling procedure indicated that different cells of myeloid origin have the ability to express CD14 in response to systemic LPS. These included CVO microglia, choroid plexus and leptomeninge macrophages, parenchymal and perivascular-associated microglial cells, although specific nonmyeloid cells were also positive for the LPS receptor. These results provide the very first evidence of a direct role of LPS on specific cell populations of the central nervous system, which is likely to be responsible for the transcription of proinflammatory cytokines; first within accessible structures from the blood and thereafter through scattered parenchymal cells during severe sepsis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.