• Anaesthesia · Jul 2013

    Quantitative assessment of brain microvascular and tissue oxygenation during cardiac arrest and resuscitation in pigs.

    • J Yu, A Ramadeen, A K Y Tsui, X Hu, L Zou, D F Wilson, T V Esipova, S A Vinogradov, H Leong-Poi, N Zamiri, C D Mazer, P Dorian, and G M T Hare.
    • Departments of Anaesthesia and Physiology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
    • Anaesthesia. 2013 Jul 1;68(7):723-35.

    AbstractCardiac arrest is associated with a very high rate of mortality, in part due to inadequate tissue perfusion during attempts at resuscitation. Parameters such as mean arterial pressure and end-tidal carbon dioxide may not accurately reflect adequacy of tissue perfusion during cardiac resuscitation. We hypothesised that quantitative measurements of tissue oxygen tension would more accurately reflect adequacy of tissue perfusion during experimental cardiac arrest. Using oxygen-dependent quenching of phosphorescence, we made measurements of oxygen in the microcirculation and in the interstitial space of the brain and muscle in a porcine model of ventricular fibrillation and cardiopulmonary resuscitation. Measurements were performed at baseline, during untreated ventricular fibrillation, during resuscitation and after return of spontaneous circulation. After achieving stable baseline brain tissue oxygen tension, as measured using an Oxyphor G4-based phosphorescent microsensor, ventricular fibrillation resulted in an immediate reduction in all measured parameters. During cardiopulmonary resuscitation, brain oxygen tension remained unchanged. After the return of spontaneous circulation, all measured parameters including brain oxygen tension recovered to baseline levels. Muscle tissue oxygen tension followed a similar trend as the brain, but with slower response times. We conclude that measurements of brain tissue oxygen tension, which more accurately reflect adequacy of tissue perfusion during cardiac arrest and resuscitation, may contribute to the development of new strategies to optimise perfusion during cardiac resuscitation and improve patient outcomes after cardiac arrest.Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.