-
J. Oral Maxillofac. Surg. · Oct 2013
Comparative StudyDigital surgical templates for managing high-energy zygomaticomaxillary complex injuries associated with orbital volume change: a quantitative assessment.
- Xiang-Zhen Liu, Da-Long Shu, Wei Ran, Bing Guo, and Xin Liao.
- Attending, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- J. Oral Maxillofac. Surg. 2013 Oct 1;71(10):1712-23.
PurposeThis study sought to introduce 3-dimensional (3D) virtual surgical planning and digital rapid-prototyping templates for zygomaticomaxillary complex (ZMC) injuries associated with orbital volume change and to evaluate the surgical outcomes quantitatively.Patients And MethodsEight patients who underwent open reduction and fixation for a ZMC injury with orbital volume change were studied. Computed tomographic (CT) scan of the zygomaticomaxillary area was performed before the operation in each case. Scanned data were converted into 3D models using Mimics software (Materialise, Brussels, Belgium) for surgical designs. Virtual surgical reductions and correlated guiding templates were designed using Mimics and Magics software (Materialise). The operations were performed with the help of prefabricated templates to reduce the fractures. A postoperative CT scan of each patient was obtained within 2 weeks after surgery, and quantitative measurements were made to assess the surgical outcomes. Preoperative volumes of the bilateral orbits were compared, and concordance with postoperative volumes of the bilateral orbits was assessed. Twenty-one pairs of distances from 7 marker points to 3 reference planes were measured to assess postoperative facial symmetry.ResultsVolumes of the injured orbits were significantly different from volumes of the uninjured orbits preoperatively (P < .05), whereas bilateral orbital volumes showed no statistically significant difference postoperatively (P > .05). In addition, 19 of the 21 pairs of bilateral distances showed no significant difference postoperatively (P > .05).ConclusionsQuantitative assessment showed that digitally designed, rapid-prototyping templates for ZMC fractures have a positive impact on restoring facial symmetry and concordance of bilateral orbital volumes.Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.