• J. Neurosci. · Nov 1996

    An explanation for reflex blink hyperexcitability in Parkinson's disease. I. Superior colliculus.

    • M A Basso, A S Powers, and C Evinger.
    • Department of Psychology, SUNY Stony Brook 11794, USA.
    • J. Neurosci. 1996 Nov 15;16(22):7308-17.

    AbstractHyperexcitable reflex blinks are a cardinal sign of Parkinson's disease. We investigated the neural circuit through which a loss of dopamine in the substantia nigra pars compacta (SNc) leads to increased reflex blink excitability. Through its inhibitory inputs to the thalamus, the basal ganglia could modulate the brainstem reflex blink circuits via descending cortical projections. Alternatively, with its inhibitory input to the superior colliculus, the basal ganglia could regulate brainstem reflex blink circuits via tecto-reticular projections. Our study demonstrated that the basal ganglia utilizes its GABAergic input to the superior colliculus to modulate reflex blinks. In rats with previous unilateral 6-hydroxydopamine (6-OHDA) lesions of the dopamine neurons of the SNc, we found that microinjections of bicuculline, a GABA antagonist, into the superior colliculus of both alert and anesthetized rats eliminated the reflex blink hyperexcitability associated with dopamine depletion. In normal, alert rats, decreasing the basal ganglia output to the superior colliculus by injecting muscimol, a GABA agonist, into the substantia nigra pars reticulata (SNr) markedly reduced blink amplitude. Finally, brief trains of microstimulation to the superior colliculus reduced blink amplitude. Histological analysis revealed that effective muscimol microinjection and microstimulation sites in the superior colliculus overlapped the nigrotectal projection from the basal ganglia. These data support models of Parkinsonian symtomatology that rely on changes in the inhibitory drive from basal ganglia output structures. Moreover, they support a model of Parkinsonian reflex blink hyper-excitability in which the SNr-SC target projection is critical.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.