• Eur. J. Appl. Physiol. · Feb 2015

    First-time imaging of effects of inspired oxygen concentration on regional lung volumes and breathing pattern during hypergravity.

    • João Batista Borges, Göran Hedenstierna, Jakob S Bergman, Marcelo B P Amato, Jacques Avenel, and Stéphanie Montmerle-Borgdorff.
    • Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology & Critical Care, Uppsala University, Uppsala, Sweden, joao.batista_borges@surgsci.uu.se.
    • Eur. J. Appl. Physiol. 2015 Feb 1;115(2):353-63.

    PurposeAeroatelectasis can develop in aircrew flying the latest generation high-performance aircraft. Causes alleged are relative hyperoxia, increased gravity in the head-to-foot direction (+Gz), and compression of legs and stomach by anti-G trousers (AGT). We aimed to assess, in real time, the effects of hyperoxia, +Gz accelerations and AGT inflation on changes in regional lung volumes and breathing pattern evaluated in an axial plane by electrical impedance tomography (EIT).MethodsThe protocol mimicked a routine peacetime flight in combat aircraft. Eight subjects wearing AGT were studied in a human centrifuge during 1 h 15 min exposure of +1 to +3.5Gz. They performed this sequence three times, breathing AIR, 44.5 % O2 or 100 % O2. Continuous recording of functional EIT enabled uninterrupted assessment of regional lung volumes at the 5th intercostal level. Breathing pattern was also monitored.ResultsEIT data showed that +3.5Gz, compared with any moment without hypergravity, caused an abrupt decrease in regional tidal volume (VT) and regional end-expiratory lung volume (EELV) measured in the EIT slice, independently of inspired oxygen concentration. Breathing AIR or 44.5 % O2, sub-regional EELV measured in the EIT slice decreased similarly in dorsal and ventral regions, but sub-regional VT measured in the EIT slice decreased significantly more dorsally than ventrally. Breathing 100 % O2, EELV and VT decreased similarly in both regions. Inspired tidal volume increased in hyperoxia, whereas breathing frequency increased in hypergravity and hyperoxia.ConclusionsOur findings suggest that hypergravity and AGT inflation cause airway closure and air trapping in gravity-dependent lung regions, facilitating absorption atelectasis formation, in particular during hyperoxia.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…