• J. Nucl. Med. · Apr 2010

    Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen.

    • Tyler J Wellman, Tilo Winkler, Eduardo L V Costa, Guido Musch, R Scott Harris, Jose G Venegas, and Marcos F Vidal Melo.
    • Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
    • J. Nucl. Med. 2010 Apr 1;51(4):646-53.

    UnlabelledRegional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship.MethodsFour supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively.ResultssVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis.ConclusionsVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.