-
- Irina Kharatishvili and Asla Pitkänen.
- Epilepsy Research Laboratory, Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, and Department of Neurology, Kuopio University Hospital, FIN-70211 Kuopio, Finland.
- Epilepsy Res. 2010 Jun 1;90(1-2):47-59.
AbstractPosttraumatic epilepsy is a common consequence of traumatic brain injury in humans. Major predictors for the development of posttraumatic epilepsy include the severity of injury and occurrence of cortical contusions. The effect of the size or location of the cortical lesion on the risk of epileptogenesis, however, is poorly understood. Here, we investigated the extent and location of cortical damage and its association with a lowered seizure threshold and the occurrence of spontaneous seizures in rats (n=77) that had experienced moderate or severe lateral fluid-percussion brain injury (FPBI) 12 months earlier. Spontaneous seizures were detected with video-electroencephalography monitoring and a lowered seizure threshold was determined based on a pentylenetetrazol (PTZ) test. Cortical atrophy was evaluated from thionin-stained sections using the Cavalieri estimation in four different experiments in which rats developed either spontaneous recurrent seizures (i.e., epilepsy) or a lowered seizure threshold. Our data show that damage to the cortex ipsilateral to the injury was more severe and extended more caudally in epileptic animals than in those without epilepsy (p<0.05 and p<0.001 for 2 independent experiments). Further, the extent of the cortical damage correlated positively with chronically increased hyperexcitability (number of spikes in PTZ test) in animals with traumatic brain injury (r=-0.54, p<0.05; r=-0.72, p<0.01 for 2 independent experiments). Specifically, cortical lesions located at the level of the perirhinal, entorhinal, and postrhinal cortices were associated with a lowered seizure threshold and seizures. The severity of the cortical injury did not correlate with the severity of hippocampal damage. These findings indicate that, like in humans, the severity of cortical injury correlates with epileptogenesis and epilepsy in an experimental model of posttraumatic epilepsy.Copyright (c) 2010 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.