-
J Bone Joint Surg Am · Nov 2009
The role of nitric oxide synthase and heme oxygenase in the protective effect of hypothermia in ischemia-reperfusion injury.
- Russell Ward, Nicholas Souder, Daniel Stahl, Felicia Hunter, Robert Probe, Christopher Chaput, and Ed Childs.
- Departments of Orthopaedic Surgery, Scott and White Memorial Hospital, 2401 South 31st Street, Temple, TX 76508, USA.
- J Bone Joint Surg Am. 2009 Nov 1;91(11):2637-45.
BackgroundIschemia-reperfusion injury plays an important role in limb salvage following limb ischemia. The purpose of the present study was to evaluate the effect of local hypothermia and chemical modulators on microvascular permeability following ischemia-reperfusion injury in skeletal muscle.MethodsSprague-Dawley rats were randomized into nine groups. Postcapillary venules of the extensor digitorum longus muscle were visualized with use of intravital microscopy. Following an intravenous bolus of fluorescein isothiocyanate-labeled albumin, the intravascular and extravascular space was examined for leak. Rats in the sham group underwent a one-hour mock ischemic period without the application of a femoral artery tourniquet, followed by one hour of mock reperfusion. The treatment groups (n = 5 in each group) had the tourniquet applied for one hour, followed by one hour of reperfusion at 10 degrees C (cold) alone, at 10 degrees C with nitric oxide synthase inhibitor, at 10 degrees C with heme oxygenase inhibitor, at 10 degrees C with a combination of inhibitors, at 34 degrees C (warm) alone, at 34 degrees C with a heme oxygenase inducer, at 34 degrees C with a nitric oxide synthase inducer, or at 34 degrees C with a combination of inducers.ResultsRats in the sham group did not show a significant increase in microvascular permeability. Rats in the warm ischemia/reperfusion group displayed significant increases in microvascular permeability, as did the rats that received inhibitors of heme oxygenase and nitric oxide synthase at 10 degrees C. No significant increase in microvascular permeability was observed in the animals in the cold ischemia/reperfusion group or in animals that received inducers of heme oxygenase and nitric oxide synthase at 34 degrees C.ConclusionsLocal hypothermia protects skeletal muscle from increased microvascular permeability following ischemia-reperfusion injury. This protective effect is also seen with the induction of the nitric oxide synthase and heme oxygenase systems at physiologic temperature. We also have shown that the protective effects of hypothermia are blocked by giving heme oxygenase and nitric oxide synthase inhibitors while keeping the muscle hypothermic. These findings demonstrate that heme oxygenase and nitric oxide synthase play a combined role in ischemia-reperfusion injury, suggesting possible pathways for clinical intervention to modulate injury seen following trauma, tourniquet use, vascular surgery, and microvascular surgery.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.