• Annals of surgery · Jul 2016

    Surgical Risk Preoperative Assessment System (SURPAS): III. Accurate Preoperative Prediction of 8 Adverse Outcomes Using 8 Predictor Variables.

    • Robert A Meguid, Michael R Bronsert, Elizabeth Juarez-Colunga, Karl E Hammermeister, and William G Henderson.
    • *Surgical Outcomes and Applied Research program, University of Colorado School of Medicine, Aurora, CO†Department of Surgery, University of Colorado School of Medicine, Aurora, CO‡Adult and Child Center for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, CO§Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO¶Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO.
    • Ann. Surg. 2016 Jul 1; 264 (1): 23-31.

    ObjectiveTo develop accurate preoperative risk prediction models for multiple adverse postoperative outcomes applicable to a broad surgical population using a parsimonious common set of risk variables and outcomes.Summary Background DataCurrently, preoperative assessment of surgical risk is largely based on subjective clinician experience. We propose a paradigm shift from the current postoperative risk adjustment for cross-hospital comparison to patient-centered quantitative risk assessment during the preoperative evaluation.MethodsWe identify the most common and important predictor variables of postoperative mortality, overall morbidity, and 6 complication clusters from previously published prediction analyses that used forward selection stepwise logistic regression. We then refit the prediction models using only the 8 most common and important predictor variables, and compare the discrimination and calibration of these models to the original full-variable models using the c-index, Hosmer-Lemeshow analysis, and Brier scores.ResultsAccurate risk models for 30-day outcomes of mortality, overall morbidity, and 6 clusters of complications were developed using a set of 8 preoperative risk variables. C-indexes of the 8 variable models are between 97.9% and 99.2% of those of the full models containing up to 28 variables, indicating excellent discrimination using fewer predictor variables. Hosmer-Lemeshow analyses showed observed to expected event rates to be nearly identical between parsimonious models and full models, both showing good calibration.ConclusionsAccurate preoperative risk assessment of postoperative mortality, overall morbidity, and 6 complication clusters in a broad surgical population can be achieved with as few as 8 preoperative predictor variables, improving feasibility of routine preoperative risk assessment for surgical patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.