-
Anesthesia and analgesia · Jun 2014
Benzodiazepine site agonists differentially alter acetylcholine release in rat amygdala.
- Viviane S Hambrecht-Wiedbusch, Melinda F Mitchell, Kelsie A Firn, Helen A Baghdoyan, and Ralph Lydic.
- From the Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan.
- Anesth. Analg. 2014 Jun 1; 118 (6): 1293-300.
BackgroundAgonist binding at the benzodiazepine site of γ-aminobutric acid type A receptors diminishes anxiety and insomnia by actions in the amygdala. The neurochemical effects of benzodiazepine site agonists remain incompletely understood. Cholinergic neurotransmission modulates amygdala function, and this study tested the hypothesis that benzodiazepine site agonists alter acetylcholine (ACh) release in the amygdala.MethodsMicrodialysis and high-performance liquid chromatography quantified ACh release in the amygdala of Sprague-Dawley rats (n = 33). ACh was measured before and after IV administration (3 mg/kg) of midazolam or eszopiclone, with and without anesthesia. ACh in isoflurane-anesthetized rats during dialysis with Ringer's solution (control) was compared with ACh release during dialysis with Ringer's solution containing (100 μM) midazolam, diazepam, eszopiclone, or zolpidem.ResultsIn unanesthetized rats, ACh in the amygdala was decreased by IV midazolam (-51.1%; P = 0.0029; 95% confidence interval [CI], -73.0% to -29.2%) and eszopiclone (-39.6%; P = 0.0222; 95% CI, -69.8% to -9.3%). In anesthetized rats, ACh in the amygdala was decreased by IV administration of midazolam (-46.2%; P = 0.0041; 95% CI, -67.9% to -24.5%) and eszopiclone (-34.0%; P = 0.0009; 95% CI, -44.7% to -23.3%), and increased by amygdala delivery of diazepam (43.2%; P = 0.0434; 95% CI, 2.1% to 84.3%) and eszopiclone (222.2%; P = 0.0159; 95% CI, 68.5% to 375.8%).ConclusionsACh release in the amygdala was decreased by IV delivery of midazolam and eszopiclone. Dialysis delivery directly into the amygdala caused either increased (eszopiclone and diazepam) or likely no significant change (midazolam and zolpidem) in ACh release. These contrasting effects of delivery route on ACh release support the interpretation that systemically administered midazolam and eszopiclone decrease ACh release in the amygdala by acting on neuronal systems outside the amygdala.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.