• Reproductive sciences · Apr 2011

    Effect of gestational diabetes on maternal artery function.

    • J L Stanley, C C Cheung, C F Rueda-Clausen, S Sankaralingam, P N Baker, and Sandra T Davidge.
    • Departments of Obstetrics/Gynecology & Physiology, University of Alberta, Edmonton, Alberta, Canada.
    • Reprod Sci. 2011 Apr 1;18(4):342-52.

    AbstractEndothelial dysfunction has been observed systemically in women with gestational diabetes (GDM). Important cardiovascular adaptations occur during pregnancy, including enhanced endothelium-dependent vasodilation in systemic and uterine arteries, which are necessary to ensure the health of both mother and fetus. The effects of GDM, however, on uterine artery function and the possible mechanisms that mediate endothelial dysfunction remain unknown. The aim of this study was to utilize a mouse model of GDM to investigate (a) effects on uteroplacental flow, (b) endothelial function of uterine and mesenteric arteries, and (c) possible mechanisms of any dysfunction observed. Pregnant mice heterozygous for a leptin receptor mutation (Lepr(db) (/+); He) spontaneously develop GDM and were compared to wild-type (WT) mice at day 18.5 of gestation. Uterine artery flow was assessed using ultrasound biomicroscopy. Uterine and mesenteric artery function was assessed using wire myography. Arterial superoxide production was measured using oxidative fluorescence microphotography. In vivo uteroplacental perfusion was impaired in mice with GDM, indicated by a significant increase in uterine artery resistance index. Maximal endothelium-dependent relaxation to methacholine was significantly impaired in mesenteric arteries from mice with GDM, while sensitivity was significantly reduced in uterine arteries. Both uterine and mesenteric arteries from mice with GDM exhibited a greater dependence on nitric oxide and increased superoxide production compared with those from mice with a healthy pregnancy. A significant source of superoxide in GDM mice was uncoupled nitric oxide synthase. These changes may contribute to the development of some of the fetal and maternal complication associated with GDM.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.