• IEEE Trans Neural Syst Rehabil Eng · Sep 2002

    Comparative Study

    Improving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents.

    • Winnie Jensen, Thomas Sinkjaer, and Francisco Sepulveda.
    • Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
    • IEEE Trans Neural Syst Rehabil Eng. 2002 Sep 1;10(3):133-9.

    AbstractClosed-loop functional electrical stimulation (FES) applications depend on sensory feedback, thus, it is important to continuously investigate new methods to obtain reliable feedback signals. The objective of the present paper was to examine the feasibility of using an artificial neural network (ANN) to predict joint angle from whole nerve cuff recordings of muscle afferent activity within a physiological range of motion. Furthermore, we estimated how small changes in joint angle that can be detected from the nerve cuff recordings. Neural networks were tested with data obtained from ten acute rabbit experiments in simulated, on-line experiments. The electroneurograms (ENG) of the tibial and peroneal nerves were recorded during passive ankle joint rotation. To decrease the joint angle prediction error with new rabbit data, we attempted to pretune the nerve signals and re-trained the ANNs with the pretuned data. With these procedures we were able to compensate for interrabbit variability. On average the mean prediction errors were less than 2.0 degrees (a total excursion of 20 degrees) and we were able to predict joint angles from muscle afferent activity with accuracy close to the best-estimated angular resolution. The angular resolution was found to depend on the initial joint angle and the actual step size taken and we found that there was a low probability of detecting joint angle changes less than 1.5 degrees. We thus suggest that muscle afferent activity is applicable as feedback in real-time closed-loop control, when the motion speed is restricted and when the movement is limited to a portion of the joint's physiological range.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…