• AJNR Am J Neuroradiol · Dec 2012

    Age-related changes of cerebral autoregulation: new insights with quantitative T2'-mapping and pulsed arterial spin-labeling MR imaging.

    • M Wagner, A Jurcoane, S Volz, J Magerkurth, F E Zanella, T Neumann-Haefelin, R Deichmann, O C Singer, and E Hattingen.
    • Institute of Neuroradiology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany. marlies.wagner@kgu.de
    • AJNR Am J Neuroradiol. 2012 Dec 1;33(11):2081-7.

    Background And PurposeCerebral perfusion and O(2) metabolism are affected by physiologic age-related changes. High-resolution motion-corrected quantitative T2'-imaging and PASL were used to evaluate differences in deoxygenated hemoglobin and CBF of the gray matter between young and elderly healthy subjects. Further combined T2'-imaging and PASL were investigated breathing room air and 100% O(2) to evaluate age-related changes in cerebral autoregulation.Materials And MethodsTwenty-two healthy volunteers 60-88 years of age were studied. Two scans of high-resolution motion-corrected T2'-imaging and PASL-MR imaging were obtained while subjects were either breathing room air or breathing 100% O(2). Manual and automated regions of interest were placed in the cerebral GM to extract values from the corresponding maps. Results were compared with those of a group of young healthy subjects previously scanned with the identical protocol as that used in the present study.ResultsThere was a significant decrease of cortical CBF (P < .001) and cortical T2' values (P < .001) between young and elderly healthy subjects. In both groups, T2' remained unchanged under hyperoxia compared with normoxia. Only in the younger but not in the elderly group could a significant (P = .02) hyperoxic-induced decrease of the CBF be shown.ConclusionsT2'-mapping and PASL in the cerebral cortex of healthy subjects revealed a significant decrease of deoxygenated hemoglobin and of CBF with age. The constant deoxyHb level breathing 100% O(2) compared with normoxia in young and elderly GM suggests an age-appropriate cerebral autoregulation. At the younger age, hyperoxic-induced CBF decrease may protect the brain from hyperoxemia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.