-
- Alison J Barker and Erik M Ullian.
- Department of Ophthalmology, University of California, San Francisco, California, USA.
- Neuroscientist. 2010 Feb 1;16(1):40-50.
AbstractSynaptic plasticity, the ability of neurons to change the number and strength of their synapses, has long been considered the sole province of the neuron. Yet neurons do not function in isolation; they are a part of elaborate glial networks where they are intimately associated with astrocytes. Astrocytes make extensive contacts with synaptic sites where they release soluble factors that can increase synapse number, provide synaptic insulation restricting the spread of neurotransmitter to neighboring synapses, and release neuroactive compounds, gliotransmitters, that can directly influence synaptic transmission. During periods of synaptogenesis, astrocyte processes are highly mobile and may contribute to the stabilization of new synapses. As our understanding of the extent of their influence at the synapse unfolds, it is clear that astrocytes are well poised to modulate multiple aspects of synaptic plasticity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.