• Pharmacol. Res. · Dec 2015

    Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/β-endorphin pathway.

    • Yu Jia, Nian Gong, Teng-Fei Li, Bin Zhu, and Yong-Xiang Wang.
    • King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China.
    • Pharmacol. Res. 2015 Dec 1; 102: 276-85.

    AbstractBoth peptidic agonist exenatide and herbal agonist catalpol of the glucagon-like peptide-1 receptor (GLP-1R) are neuroprotective. We have previously shown that activation of spinal GLP-1Rs expresses β-endorphin in microglia to produce antinociception. The aim of this study was to explore whether exenatide and catalpol exert neuroprotection via activation of the hippocampal GLP-1R/β-endorphin pathway. The rat middle cerebral artery occlusion model was employed, and the GLP-1R immunofluorescence staining and β-endorphin measurement were assayed in the hippocampus and primary cultures of microglia, neurons and astrocytes. The immunoreactivity of GLP-1Rs on microglia in the hippocampus was upregulated after ischemia reperfusion. Intracerebroventricular (i.c.v.) injection of exenatide and catalpol produced neuroprotection in the rat transient ischemia/reperfusion model, reflected by a marked reduction in brain infarction size and a mild recovery in neurobehavioral deficits. In addition, i.c.v. injection of exenatide and catalpol significantly stimulated β-endorphin expression in the hippocampus and cultured primary microglia (but not primary neurons or astrocytes). Furthermore, exenatide and catalpol neuroprotection was completely blocked by i.c.v. injection of the GLP-1R orthosteric antagonist exendin (9-39), specific β-endorphin antiserum, and selective opioid receptor antagonist naloxone. Our results indicate, for the first time, that the neuroprotective effects of catalpol and exenatide are GLP-1R-specific, and that these effects are mediated by β-endorphin expression probably in hippocampal microglia. We postulate that in contrast to the peripheral tissue, where the activation of GLP-1Rs in pancreas islet β-cells causes secretion of insulin to perform glucoregulation, it leads to β-endorphin expression in microglial cells to produce neuroprotection and analgesia in the central nervous system. Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.