• J. Neurosci. · Jun 1994

    Injury-induced plasticity of spinal reflex activity: NK1 neurokinin receptor activation and enhanced A- and C-fiber mediated responses in the rat spinal cord in vitro.

    • S W Thompson, A Dray, and L Urban.
    • Sandoz Institute for Medical Research, London, United Kingdom.
    • J. Neurosci. 1994 Jun 1;14(6):3672-87.

    AbstractA- and C-fiber evoked ventral root potential (VRP) responses have been examined in isolated spinal cord preparations maintained in vitro that were taken from young rats in which behavioral hyperalgesia (thermal and mechanical) was induced following UV irradiation of one hindpaw. Evoked VRPs were compared with those in naive untreated animals. The duration of both the A- and C-fiber evoked VRP was significantly increased in UV-treated animals. The amplitude of the summated VRP evoked by repeated low-frequency (1.0-5.0 Hz) C-fiber stimulation, a measure of windup, was significantly greater in UV-treated animals. In UV-treated animals, repeated low-frequency (1.0-5.0 Hz) stimulation of A-fiber inputs to the spinal cord also evoked a significant summated VRP, which was not observed in spinal cords from untreated animals. In naive animals the prolonged VRP evoked following single shock C-fiber stimulation was significantly antagonized by the NMDA receptor antagonist D-AP5 and the NK2 receptor antagonist MEN, 10376 but not by the NK1 receptor antagonists CP-96,345 or RP,67580. Summated VRPs evoked by repeated C-fiber stimulation in naive animals were significantly antagonized only by D-AP5. In hyperalgesic animals the prolonged VRP evoked by C-fiber stimulation was significantly reduced by NK1, NK2, and NMDA antagonists. The summated VRP was also significantly reduced by these antagonists. In both untreated and UV-irradiated animals the single shock evoked A-fiber ventral root response was significantly antagonized only by D-AP5. However, the summated VRP evoked by repeated A-fiber stimulation in UV-treated animals was also significantly reduced by NMDA, NK1, and NK2 receptor antagonists. The present study has demonstrated enhanced A- and C-fiber evoked responses in the rat spinal cord in vitro following induction of a peripheral injury by UV irradiation and which was associated with behavioral hyperalgesia to thermal and mechanical stimuli. Under this condition, repetitive stimulation of A-fiber primary afferents was capable of producing an enhancement of spinal excitability similar to that evoked by C-fibers in normal animals. Furthermore, we have observed the expression of an NK1 receptor component to the C-fiber evoked response following the establishment of the peripheral injury. The enhanced ventral root responses and changes in receptor sensitivity may contribute to the phenomenon of central sensitization and may be directly related to the behavioral hyperalgesia observed. Moreover, these findings may be relevant to the mechanisms of enhanced central excitability that occur in clinical conditions of inflammatory hyperalgesia and neuropathic pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.