-
Alcohol. Clin. Exp. Res. · Jun 2015
Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice.
- Wei Hu, Brett Morris, Angelique Carrasco, and Sven Kroener.
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas.
- Alcohol. Clin. Exp. Res. 2015 Jun 1;39(6):953-61.
BackgroundThe medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol (EtOH) exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons.MethodsWe induced alcohol dependence in mice via chronic intermittent EtOH (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices.ResultsChronic EtOH exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic EtOH exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor function. Moreover, CIE treatment lowered input resistance, and decreased the threshold and the after hyperpolarization of action potentials, suggesting chronic EtOH exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these EtOH-induced changes cellular function.ConclusionsAcamprosate improved attentional control of EtOH exposed animals, but did not alter the concurrent changes in synaptic transmission or membrane excitability of mPFC neurons, indicating that these changes are not the pharmacological targets of acamprosate in the recovery of mPFC functions affected by chronic EtOH exposure.Copyright © 2015 by the Research Society on Alcoholism.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.