• Respiratory care · May 2016

    Characterization of Ribavirin Aerosol With Small Particle Aerosol Generator and Vibrating Mesh Micropump Aerosol Technologies.

    • Brian K Walsh, Peter Betit, James B Fink, Luis M Pereira, and John Arnold.
    • Department of Anesthesiology, Perioperative and Pain Medicine Department of Anesthesia, Harvard Medical School is also affiliated with the Department of Anesthesia, Harvard Medical School, Boston, Massachusetts. brian.walsh@childrens.harvard.edu.
    • Respir Care. 2016 May 1; 61 (5): 577-85.

    BackgroundRibavirin is an antiviral drug that can be administered by inhalation. Despite advancements in the oral delivery of this medication, there has been a renewed interested in delivering ribavirin via the pulmonary system. Although data are not conclusive that inhaled ribavirin improves outcomes, we set out to determine whether delivery by a newer generation nebulizer, the vibrating mesh micropump, was as effective as the recommended small-particle aerosol generator system.MethodsWe compared the physicochemical makeup and concentrations of ribavirin before and after nebulization with 0.9% NaCl and sterile water. An Andersen cascade impactor was used to determine particle size distribution and mass median aerodynamic diameter, and an absolute filter was used to measure total aerosol emitted output and inhaled dose during mechanical ventilation and spontaneous breathing. Ribavirin was analyzed and quantified using high-performance liquid chromatography with tandem mass spectrometric detection.ResultsRibavirin was found to be stable in both 0.9% aqueous NaCl and sterile water with an r(2) value of 0.96 and identical coefficients of variation with no difference in drug concentration before and after nebulization with the vibrating mesh micropump. The small-particle aerosol generator produced a smaller mass median aerodynamic diameter (1.84 μm) than the vibrating mesh micropump (3.63 μm, P = .02); however, there was no significant difference in the proportion of drug mass in the 0.7-4.7-μm particle range. Total drug delivery was similar with the small-particle aerosol generator and vibrating mesh micropump in both spontaneously breathing (P = .77) and mechanical ventilation (P = .48) models.ConclusionsThe vibrating mesh micropump nebulizer may provide an effective alternative to the small-particle aerosol generator in administration of ribavirin using NaCl or sterile water, both on and off the ventilator. Further clinical studies are needed to compare efficacy.Copyright © 2016 by Daedalus Enterprises.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…