• Ann. Thorac. Surg. · Apr 2014

    Feasibility of in vivo human aortic valve modeling using real-time three-dimensional echocardiography.

    • Arminder S Jassar, Melissa M Levack, Ricardo D Solorzano, Alison M Pouch, Giovanni Ferrari, Albert T Cheung, Victor A Ferrari, Joseph H Gorman, Robert C Gorman, and Benjamin M Jackson.
    • Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania; Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
    • Ann. Thorac. Surg. 2014 Apr 1;97(4):1255-8.

    BackgroundSurgical techniques for aortic valve (AV) repair are directed toward restoring normal structural relationships in the aortic root and rely on detailed assessment of root and valve anatomy. Noninvasive three-dimensional (3D) imaging and modeling may assist in patient selection and operative planning.MethodsTransesophageal real-time 3D echocardiographic images of 5 patients with normal AVs were acquired. The aortic root and the annulus were manually segmented at end diastole using a 36-point rotational template. The AV leaflets and the coaptation zone were manually segmented in parallel 1-mm cross sections. Quantitative 3D models of the AV and root were generated and used to measure standard anatomic parameters and were compared to conventional two-dimensional echocardiographic measurements. All measurements are given as mean±SD.ResultsAnnular, sinus, and sinotubular junction areas were 4.1±0.6 cm2, 7.5±1.2 cm2, and 3.9±1.0 cm2, respectively. Root diameters (measured in three locations) by 3D model inspection and two-dimensional echocardiography measurement correlated (R2=0.75). Noncoapted areas of the left, right, and noncoronary leaflets were 1.9±0.2 cm2, 1.6±0.3 cm2, and 1.6±0.3 cm2, respectively. Mean coaptation areas for the left-right, left-noncoronary, and right-noncoronary coaptation zones were 87.7±36.9 mm2, 69.9±20.7 mm2, and 114.2±23.0 mm2, respectively. The mean ratio of noncoapted leaflet area to annular area was 1.3±0.2.ConclusionsHigh-resolution 3D models of the in vivo normal human aortic root and valve were generated using 3D echocardiography. Quantitative 3D models and analysis may assist in characterization of pathology and decision making for AV repair.Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.