• J Neuroinflamm · Jan 2011

    Modulation of spinal cord synaptic activity by tumor necrosis factor α in a model of peripheral neuropathy.

    • Diana Spicarova, Vladimir Nerandzic, and Jiri Palecek.
    • Department of Functional Morphology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
    • J Neuroinflamm. 2011 Jan 1;8:177.

    BackgroundThe cytokine tumor necrosis factor α (TNFα) is an established pain modulator in both the peripheral and central nervous systems. Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn (DH) is thought to be involved in the development and maintenance of several pathological pain states. Increased levels of TNFα and its receptors (TNFR) in dorsal root ganglion (DRG) cells and in the spinal cord DH have been shown to play an essential role in neuropathic pain processing. In the present experiments the effect of TNFα incubation on modulation of primary afferent synaptic activity was investigated in a model of peripheral neuropathy.MethodsSpontaneous and miniature excitatory postsynaptic currents (sEPSC and mEPSCs) were recorded in superficial DH neurons in acute spinal cord slices prepared from animals 5 days after sciatic nerve transection and in controls.ResultsIn slices after axotomy the sEPSC frequency was 2.8 ± 0.8 Hz, while neurons recorded from slices after TNFα incubation had significantly higher sEPSC frequency (7.9 ± 2.2 Hz). The effect of TNFα treatment was smaller in the slices from the control animals, where sEPSC frequency was 1.2 ± 0.2 Hz in slices without and 2.0 ± 0.5 Hz with TNFα incubation. Tetrodotoxin (TTX) application in slices from axotomized animals and after TNFα incubation decreased the mEPSC frequency to only 37.4 ± 6.9% of the sEPSC frequency. This decrease was significantly higher than in the slices without the TNFα treatment (64.4 ± 6.4%). TTX application in the control slices reduced the sEPSC frequency to about 80% in both TNFα untreated and treated slices. Application of low concentration TRPV1 receptors endogenous agonist N-oleoyldopamine (OLDA, 0.2 μM) in slices after axotomy induced a significant increase in mEPSC frequency (175.9 ± 17.3%), similar to the group with TNFα pretreatment (158.1 ± 19.5%).ConclusionsOur results indicate that TNFα may enhance spontaneous transmitter release from primary afferent fibres in the spinal cord DH by modulation of TTX-sensitive sodium channels following sciatic nerve transection. This nerve injury also leads to enhanced sensitivity of presynaptic TRPV1 receptors to endogenous agonist. Modulation of presynaptic receptor activity on primary sensory terminals by TNFα may play an important role in neuropathic pain development.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.