-
Am J Phys Med Rehabil · Mar 2012
ReviewRepetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review.
- Manuela Corti, Carolynn Patten, and William Triggs.
- Neural Control of Movement Lab, Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, Florida, USA.
- Am J Phys Med Rehabil. 2012 Mar 1;91(3):254-70.
AbstractRepetitive Transcranial Magnetic Stimulation (rTMS) is known to modulate cortical excitability and has thus been suggested to be a therapeutic approach for improving the efficacy of rehabilitation for motor recovery after stroke. In addition to producing effects on cortical excitability, stroke may affect the balance of transcallosal inhibitory pathways between motor primary areas in both hemispheres: the affected hemisphere (AH) may be disrupted not only by the infarct itself but also by the resulting asymmetric inhibition from the unaffected hemisphere, further reducing the excitability of the AH. Conceptually, therefore, rTMS could be used therapeutically to restore the balance of interhemispheric inhibition after stroke. rTMS has been used in two ways: low-frequency stimulation (≤1 Hz) to the motor cortex of the unaffected hemisphere to reduce the excitability of the contralesional hemisphere or high-frequency stimulation (>1 Hz) to the motor cortex of the AH to increase excitability of the ipsilesional hemisphere. The purpose of this systematic review is to collate evidence regarding the safety and efficacy of high-frequency rTMS to the motor cortex of the AH. The studies included investigated the concurrent effects of rTMS on the excitability of corticospinal pathways and upper-limb motor function in adults after stroke. This review suggests that rTMS applied to the AH is a safe technique and could be considered an effective approach for modulating brain function and contributing to motor recovery after stroke. Although the studies included in this review provide important information, double-blinded, sham-controlled Phase II and Phase III clinical trials with larger sample sizes are needed to validate this novel therapeutic approach.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.