• IEEE Trans Biomed Eng · Feb 2012

    A direct dynamic dose-response model of propofol for individualized anesthesia care.

    • Jin-Oh Hahn, Guy A Dumont, and J Mark Ansermino.
    • Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G2G8 Canada. jinoh.hahn@alum.mit.edu
    • IEEE Trans Biomed Eng. 2012 Feb 1;59(2):571-8.

    AbstractIn an effort to open up new opportunities in individualized anesthesia care, this paper presents a dynamic dose-response model of propofol that relates propofol dose (i.e., infusion rate) directly to a clinical effect. The proposed model consists of a first-order equilibration dynamics plus a nonlinear Hill equation model, each representing the transient distribution of propofol dose from the plasma to the effect site and the steady-state dose-effect relationship. Compared to traditional pharmacokinetic-pharmacodynamic (PKPD) models, the proposed model has structural parsimony and comparable predictive capability, making it more attractive than its PKPD counterpart for identifying an individualized dose-response model in real-time. The efficacy of the direct dynamic dose-response model over a traditional PKPD model was assessed using a mixed effects modeling analysis of the electroencephalogram (EEG)-based state entropty (SE) response to intravenous propofol administration in 34 pediatric subjects. An improvement in the mean-squared error and r(2) value of individual prediction, as well as the Akaike's information criterion (AIC) was seen with the direct dynamic dose-response model.© 2011 IEEE

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…