-
- Verena van der Heide, Patrick Möhnle, Jessica Rink, Josef Briegel, and Simone Kreth.
- From the Department of Anesthesiology, University of Munich Ludwig Maximilian University, Munich, Germany.
- Anesthesiology. 2016 Apr 1; 124 (4): 908-22.
BackgroundImmunosuppression has been recognized as a major cause of sepsis-related mortality. Currently, there is much interest in identifying central hubs controlling septic immunoparalysis. In this context, in this study, the authors investigate the role of microRNA-31 (miR-31) as a regulator of T cell functions.MethodsPrimary human T cells were separated from healthy volunteers (n = 16) and from sepsis patients by magnetic beads (n = 23). Expression of mRNA/microRNA (miRNA) was determined by real-time polymerase chain reaction. Gene silencing was performed by small interfering RNA transfection, and miRNA-binding sites were validated by reporter gene assays. Effects of miR-31 or anti-miR-31 transfection were analyzed by real-time polymerase chain reaction, Western blotting, and flow cytometry.ResultsOverexpression of miR-31 in stimulated CD4 T cells promoted a proinflammatory phenotype with increased levels of interferon-γ (1.63 ± 0.43; P = 0.001; means ± SD) and reduced expression of interleukin (IL)-2 (0.66 ± 0.19; P = 0.005) and IL-4 (0.80 ± 0.2; P = 0.0001). In contrast, transfection of anti-miR-31 directed cells toward a TH2 phenotype. Effects on IL-2 and IL-4 were mediated by targeting of nuclear factor-kappa B-inducing kinase and factor-inhibiting hypoxia-inducible factor-1α. Interferon-γ, however, was influenced via control of signaling lymphocytic activation molecule (SLAM)-associated protein, an essential adaptor molecule of immunomodulatory SLAM receptor signaling, which was identified as a novel target gene of miR-31. In sepsis patients, an epigenetically driven down-regulation of miR-31 was found (0.44 ± 0.25; P = 0.0001), associated with increased nuclear factor-kappa B-inducing kinase, factor-inhibiting hypoxia-inducible factor-1α, SLAM-associated protein expression, and a cytokine shift toward TH2.ConclusionsIn this study, the authors provide novel evidence of miR-31 as an emerging key posttranscriptional regulator of sepsis-associated immunosuppression. The study results contribute to a further understanding of septic immunoparalysis and provide new perspectives on miRNA-based diagnostic approaches.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.