• J Am Dent Assoc · Jan 1999

    Comparative Study

    Dental unit waterlines: biofilms, disinfection and recurrence.

    • T F Meiller, L G Depaola, J I Kelley, A A Baqui, B F Turng, and W A Falkler.
    • Department of Oral Medicine and Diagnostic Sciences, University of Maryland Baltimore Dental School 21201, USA.
    • J Am Dent Assoc. 1999 Jan 1;130(1):65-72.

    BackgroundTransmission of microbial pathogens to patients from biofilm within dental unit waterlines, or DUWLs, is a concern. To reduce the risk of toxicity to dental patients when water coolants are used, numerous chemical agents have been tested. In a series of trials, the authors investigated the recurrence of microbial growth after treating DUWLs with sodium hypochlorite (bleach), or B; glutaraldehyde, or G; or isopropanol 15.3 percent, or I.MethodsThe authors excised tubing sections from dental units in a general clinic. The tubing sections were evaluated at baseline and after overnight treatment. Effluent water samples and biofilm samples from tubing sections also were evaluated, by culture, at baseline and after treatment with the chemical agents. Biofilm within the tubing was examined by scanning electron microscopy, or SEM, and the authors identified bacterial isolates using standard techniques. The authors performed minimum inhibitory concentration tests on identified isolates pre- and posttreatment and compared the results to determine possible differences in resistance.ResultsIn baseline evaluations, the authors determined that the effluent and biofilm matrix harbored an average of 1 x 10(5) colony-forming units, or CFU, per square centimeter and 1 x 10(4) CFU/cm2 recoverable microorganisms, respectively. A single overnight treatment of the DUWLs with B, G or I rendered effluent and biofilm samples that were free of recoverable bacteria. The number of viable bacteria in the effluent and the biofilm of B- or I-treated DUWLs returned to pretreatment levels by day six and day 15, respectively. DUWLs treated with G showed evidence of bacterial recurrence in the effluent and the biofilm to pretreatment levels by day three. The authors compared recurrence of biofilm and effluent posttreatment with untreated control tubing. The lower recurrence of viable bacteria in both biofilm and effluent samples for tubing treated with B and I was significant (P < or = .05). No evidence of resistance to the agents was noted during the study. Multiple treatments held the bacterial population to below recoverable levels but failed to remove the biofilm matrix, as evidenced by SEM.ConclusionsB, G and I eliminated recoverable bacteria after treatment and inhibited their recurrence in DUWL. Recolonization rates varied by agent.Clinical ImplicationsThe residual effect of these agents raises concerns about the slow release of potentially toxic substances from the residual biofilm matrix. These agents reduce microorganisms in effluent water but do little to destroy the biofilm matrix in the DUWL, even with periodic treatments. Bacterial populations in the dental unit water rapidly recolonize the DUWL. Chemical agents or agents that potentially could be trapped in the matrix can represent an additional risk to the patient.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.