• J. Pharmacol. Exp. Ther. · Aug 2000

    Functional compartmentalization of opioid desensitization in primary sensory neurons.

    • G M Samoriski and R A Gross.
    • Departments of Neurology and Pharmacology & Physiology, University of Rochester School of Medicine & Dentistry, New York, USA. gary_samoriski@urmc.rochester.edu
    • J. Pharmacol. Exp. Ther. 2000 Aug 1;294(2):500-9.

    AbstractThe cellular correlates of desensitization or tolerance are poorly understood. To address this, we studied acute and long-term mu-opioid desensitization, with respect to Ca(2+) currents, in cultured rat dorsal root ganglion (DRG) neurons. Exposure of DRG neurons to the mu-agonist [D-Ala(2),N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO; 3 microM) reduced whole-cell currents approximately 35%, but with continued agonist application, 52% of the response was lost over 10 to 12 min. In contrast, exposure of DRG neurons to DAMGO for 24 h resulted in a nearly complete loss of Ca(2+) channel regulation after washing and re-exposure to DAMGO. Responses to the gamma-aminobutyric acid(B) agonist baclofen were not affected in these neurons. Acute desensitization preferentially affected the voltage-sensitive component of mu-opioid and gamma-aminobutyric acid(B) responses. Facilitation of both the DAMGO- and baclofen-inhibited current by a strong depolarizing prepulse was significantly attenuated in acutely desensitized neurons. Because G(betagamma)-subunits mediate neurotransmitter-induced changes in channel voltage-dependent properties, these data suggest an altered interaction of the G(betagamma)-subunit with the Ca(2+) channel. Block of N-type Ca(2+) channels with omega-conotoxin GVIA revealed a component of the opioid response that did not desensitize over 10 min. We conclude that acute and long-term mu-opioid desensitization in DRG neurons occurs by different mechanisms. Acute desensitization is heterologous and functionally compartmentalized: the pathway targeting non-N-type channels is relatively resistant to the early effects of continuous agonist exposure; the pathway targeting N-type channels in a largely voltage-insensitive manner is partially desensitized; and the pathway targeting N-type channels in a largely voltage-sensitive manner is completely desensitized.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.