• Neuropharmacology · Mar 2011

    Volatile anesthetic effects on isolated GABA synapses and extrasynaptic receptors.

    • S K Ogawa, E Tanaka, M C Shin, N Kotani, and N Akaike.
    • Research Division for Life Science, Kumamoto Health Science University, Kumamoto, Japan. sogawa@kumamoto-hsu.ac.jp
    • Neuropharmacology. 2011 Mar 1;60(4):701-10.

    AbstractThe volatile anesthetics enhance GABAergic inhibitory transmission at synaptic and extrasynaptic sites at central neurons. In the present study, we investigated the effects of three volatile anesthetics (isoflurane, enflurane and sevoflurane) on synaptic and extrasynaptic GABA(A) receptor responses using mechanically dissociated rat hippocampal CA1 neurons in which functional native nerve endings (boutons) were retained. The extrasynaptic GABA(A) receptors were activated by exogenous GABA application while synaptic ones were assessed by miniature and evoked inhibitory postsynaptic currents (mIPSCs and eIPSCs, respectively). All volatile anesthetics concentration-dependently enhanced the exogenous GABA-induced postsynaptic responses. The structural isomers, isoflurane and enflurane, increased mIPSC frequency while sevoflurane had no effect. None of these anesthetics altered mIPSC amplitudes at their clinically relevant concentrations. Sevoflurane prolonged event kinetics by increasing decay time of mIPSCs and eIPSCs at clinically relevant concentration. On the other hand, both isoflurane and enflurane only prolonged the kinetics of these events at 1 mM of high concentration. For GABAergic eIPSCs, both isoflurane and enflurane decreased the evoked response amplitude and increased the failure rate (Rf), while sevoflurane decreased the amplitude without affecting Rf. These results suggest that isoflurane and enflurane at the clinically relevant concentrations predominantly act on GABAergic presynaptic nerve endings to decrease action potential dependent GABA release. It was concluded that these anesthetics have heterogeneous effects on mIPSCs and eIPSCs with different modulation of synaptic and extrasynaptic GABA(A) receptors.Copyright © 2010 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.