• Plos One · Jan 2014

    Atorvastatin improves plaque stability in ApoE-knockout mice by regulating chemokines and chemokine receptors.

    • Peng Nie, Dandan Li, Liuhua Hu, Shuxuan Jin, Ying Yu, Zhaohua Cai, Qin Shao, Jieyan Shen, Jing Yi, Hua Xiao, Linghong Shen, and Ben He.
    • Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
    • Plos One. 2014 Jan 1;9(5):e97009.

    AbstractIt is well documented that statins protect atherosclerotic patients from inflammatory changes and plaque instability in coronary arteries. However, the underlying mechanisms are not fully understood. Using a previously established mouse model for vulnerable atherosclerotic plaque, we investigated the effect of atorvastatin (10 mg/kg/day) on plaque morphology. Atorvastatin did not lower plasma total cholesterol levels or affect plaque progression at this dosage; however, vulnerable plaque numbers were significantly reduced in the atorvastatin-treated group compared to control. Detailed examinations revealed that atorvastatin significantly decreased macrophage infiltration and subendothelial lipid deposition, reduced intimal collagen content, and elevated collagenase activity and expression of matrix metalloproteinases (MMPs). Because vascular inflammation is largely driven by changes in monocyte/macrophage numbers in the vessel wall, we speculated that the anti-inflammatory effect of atorvastatin may partially result from decreased monocyte recruitment to the endothelium. Further experiments showed that atorvastatin downregulated expression of the chemokines monocyte chemoattractant protein (MCP)-1, chemokine (C-X3-C motif) ligand 1 (CX3CL1) and their receptors CCR2 and, CX3CR1, which are mainly responsible for monocyte recruitment. In addition, levels of the plasma inflammatory markers C-reactive protein (CRP) and tumor necrosis factor (TNF)-α were also significantly decrease in atorvastatin-treated mice. Collectively, our results demonstrate that atorvastatin can improve plaque stability in mice independent of plasma cholesterol levels. Given the profound inhibition of macrophage infiltration into atherosclerotic plaques, we propose that statins may partly exert protective effects by modulating levels of chemokines and their receptors. These findings elucidate yet another atheroprotective mechanism of statins.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.