• J. Med. Chem. · Apr 2003

    Modifications of the ethanolamine head in N-palmitoylethanolamine: synthesis and evaluation of new agents interfering with the metabolism of anandamide.

    • Séverine Vandevoorde, Kent-Olov Jonsson, Christopher J Fowler, and Didier M Lambert.
    • Unité de Chimie Pharmaceutique et de Radiopharmacie, Université Catholique de Louvain, Avenue Mounier, 73, UCL-CMFA 73.40, B-1200 Brussels, Belgium.
    • J. Med. Chem. 2003 Apr 10;46(8):1440-8.

    AbstractThe endogenous fatty acid amide anandamide (AEA) has, as a result of its actions on cannabinoid and vanilloid receptors, a number of important pharmacological properties including effects on nociception, memory processes, spasticity, and cell proliferation. Inhibition of the metabolism of AEA, catalyzed by fatty acid amide hydrolase (FAAH), potentiates the actions of AEA in vivo and therefore may be a useful target for drug development. In the present study, we have investigated whether substitution of the headgroup of the endogenous alternative FAAH substrate palmitoylethanolamide (PEA) can result in the identification of novel compounds preventing AEA metabolism. Thirty-seven derivatives of PEA were synthesized, with the C16 long chain of palmitic acid kept intact, and comprising 20 alkylated, 12 aromatic, and 4 halogenated amides. The ability of the PEA derivatives to inhibit FAAH-catalyzed hydrolysis of [(3)H]AEA was investigated using rat brain homogenates as a source of FAAH. Inhibition curves were analyzed to determine the potency of the inhibitable fraction (pI(50) values) and the maximal attained inhibition for the compound, given that solubility in an aqueous environment is a major issue for these compounds. In the alkylamide family, palmitoylethylamide and palmitoylallylamide were inhibitors of AEA metabolism with pI(50) values of 5.45 and 5.47, respectively. Halogenated derivatives (Cl and Br) exhibit pI(50) values of approximately 5.5 but rather low percentages of maximal inhibition. The -OH group of the ethyl head chain of N-palmitoylethanolamine was not necessary for interaction with FAAH. Amides containing aromatic moieties were less potent inhibitors of AEA metabolism. Compounds containing amide and ester bonds, 13 and 37, showed pI(50) values of 4.99 and 5.08, respectively. None of the compounds showed obvious affinity for CB(1) or CB(2) receptors expressed on Chinese hamster ovary (CHO) cells. It is concluded that although none of the compounds were dramatically more potent than PEA itself at reducing the metabolism of AEA, the lack of effect of the compounds at CB(1) and CB(2) receptors makes them useful templates for development of possible therapeutic FAAH inhibitors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.